Normal view MARC view ISBD view

Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios

by Imbach Bartol, Pablo A; Molina, Luis (autor/a); Locatelli, Bruno (autor/a); Roupsard, Olivier (autor/a); Mahé, Gil (autor/a); Neilson, Ronald (autor/a); Corrales, Lenin (autor/a); Scholze, Marko (autor/a); Ciais, Philippe (autor/a).
Type: materialTypeLabelBookDescription: 17 páginas : 8 ilustraciones.Subject(s): IMPACTO AMBIENTAL | CICLO HIDROLOGICO | VEGETACION | INDICE DE VEGETACION | MODELIZACION DEL MEDIO AMBIENTE | CO2 ATMOSFERICO | EVAPOTRANSPIRACION | ESCORRENTIA | INTERACCION BIOLOGICA | CAMBIO CLIMATICO | AMERICA CENTRALOnline Resources: Texto completo (En) Summary: The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil–vegetation–atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%–89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO 2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likeli- hood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.
    average rating: 0.0 (0 votes)
No physical items for this record

Bibliografía páginas 678-680

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle
in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic
and climatic conditions and is among the tropical regions with the highest expected changes in precipitation
and temperature under future climate scenarios. The biogeographic soil–vegetation–atmosphere model
Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area
index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the
twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle
under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low,
intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models
(GCMs). LAI is likely to decrease over 77%–89% of the region, depending on climate scenario groups,
showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of
CO
2
on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region
even in areas where precipitation increases (even under increased water use efficiency), as temperature
change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likeli-
hood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of
climate change on vegetation and water cycle are predicted with relatively low uncertainty.

Click on an image to view it in the image viewer